bulletin of the chemical society of Japan, vol. 47(8), 2069—2070 (1974)

The Preparation of Mixed Cobalt(III) Complexes of N,N-Bis(2-aminoethyl)-glycine with the Carbonate or Oxalate Ion¹⁾

Syoji NAKASHIMA and Muraji SHIBATA

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920

(Received February 20, 1974)

Synopsis. mer(N)- and fac(N)-[CoCO₃(i-dtma)] complexes have been prepared by the reaction of the tetradentate ligand with the [Co(CO₃)₃]³⁻ complex. The corresponding [Coox(i-dtma)] complexes have been derived from the mer(N)-carbonato complex.

As to the cobalt(III) complex containing the tetradentate ligand N,N-bis(2-aminoethyl)glycine (abbreviated as i-DTMA) and the bidentate carbonate ion, two geometric isomers, mer(N) and fac(N), can possibly exist (Fig. 1). Of these, the fac(N) isomer has already been prepared by Schneider and Collman by means of a reaction between the $[CoCl_2(i\text{-dtma})]$ complex and lithium carbonate.²⁾ We have now succeeded in obtaining the second isomer, mer(N), by means of a reaction of the i-DTMA on the tricarbonato-cobaltate(III) complex.

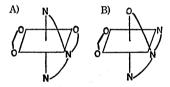


Fig. 1. Geometrical isomers of [CoCO₃(i-dtma)] A: mer(N), B: fac(N).

The i-DTMA ligand was prepared from diethylenetriamine as a stock solution according to "Method B" described in the literature.²⁾ A proper quantity (0.1 mol) of the i-DTMA stock solution was added to a fresly prepared solution of potassium tricarbonatocobaltate (III) (0.1 mol),3) and the mixture was stirred at room temperature for an hour. The resulting solution was charged on a column of a cation-exchange resin (Dowex 50WX8, Na-form). With careful washing with water, two bands, colored pink-violet and red-violet, descended the column, and the effluent was collected in two fractions. For convenience, these fractions were labeled "E-1" and "E-2". Each fraction was concentrated, and a small amount of a mixture of ethanol and ether was added to the concentrate; then the mixture was kept in a refrigerator. Very fine crystals were obtained from each concentrate. The complexes obtained from E-1 and E-2 were tentatively identified as mer(N) and fac(N) respectively, based on the order of elution. 4,5) The yields were about 6 g for mer(N) and about 9 g for fac(N). Found for mer(N): C, 29.40; H, 5.40; N, 14.56%. Calcd for [CoCO₃- $(C_6H_{14}N_3O_2)] \cdot 0.5H_2O$: C, 29.18; H, 5.25; N, 14.58%. Found for fac(N): C, 30.05; H, 5.29; N, 15.07%. Calcd for [CoCO₃(C₆H₁₄N₃O₂)]: C, 30.12; H, 5.06; N, 15.05%.

Two related complexes, mer(N), and fac(N)-[Coox-(i-dtma)], were derived from the mer(N)-[CoCO₃(idtma)] complex. After the hydrolysis of the carbonato complex (10 g) by 60% HClO₄, a proper amount of potassium oxalate was added to the acid solution; then it was neutrallized with an aqueous solution of potassium hydroxide. After the removal of the precipitated material, the resulting solution was chromatographed in the same manner as the carbonato complexes. The two bands corresponding to the mer(N)- and fac(N)-isomers descended. The crystals of these isomers were obtained in the same manner as before. The yields were 3 g for mer(N) and 2 g for fac(N). Found for mer(N): C, 30.50; H, 4.71; N, 13.20%. Calcd for [Coox- $(C_6H_{14}N_3O_2)]\cdot 0.5H_2O\colon \ C,\ 30.39;\ H,\ 4.78;\ N,\ 13.29\%.$ Found for fac(N): C, 31.12; H, 4.72; N, 13.73%. Calcd for $[Coox(C_6H_{14}N_3O_2)]$: C, 31.28; H, 4.59; N, 13.68%.

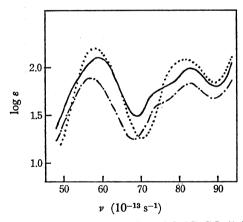


Fig. 2. Absorption spectra of mer(N)-[CoCO₃(i-dtma)] (---), fac(N)-[CoCO₃(i-dtma)] (----) and mer-(trans)-[CoCO₃(gly)(NH_3)₂] (----).

The absorption spectra of the two carbonato complexes are shown in Fig. 2. The spectrum of the complex obtained from E-2 shows the first absorption band $(\nu_{\rm I})$ at $58.0\times10^{13}~{\rm s}^{-1}$ (log $\varepsilon=2.21$) and the second band $(\nu_{\rm II})$ at $81.5\times10^{13}~{\rm s}^{-1}$ (log $\varepsilon=2.11$). These values agree fairly with those for the known fac(N) complex $(\nu_{\rm I}=58.5,~\nu_{\rm II}=81.5).^2)$ From this it can be judged that this complex is the fac(N)-isomer. On the other hand, the spectrum of the complex obtained from E-1 shows the $\nu_{\rm I}$ at $58.1\times10^{13}~{\rm s}^{-1}$ (log $\varepsilon=2.12$) and the $\nu_{\rm II}$ at $82.3\times10^{13}~{\rm s}^{-1}$ (log $\varepsilon=1.98$). In addition, this spectrum exhibits a shoulder at $ca.~74.5\times10^{13}~{\rm s}^{-1}$ (log $\varepsilon=1.7$). A similar spectrum shape has been reported with the mer(trans)-[Co(CO₃)(gly(NH₃)₂] complex (trans refers to the two NH₃ groups). The spectrum is included in Fig. 2. Although some hypso-

chromic shifts in the $\nu_{\rm I}$ and $\nu_{\rm II}$ bands can be seen in the present complex, the position of the shoulder scarcely shifts at all. From this similarity in spectrum, the present complex can be assigned to the mer(N)-isomer.

The PMR spectra of the same complexes are shown in Fig. 3. The E-1 or mer(N) complex shows a singlet at 3.75 ppm which has its origin in the methylene protons of the acetate group in the chelated *i*-DTMA, while the E-2 or fac(N) complex shows a quartet with the AB pattern at 3.80—4.25 ppm. These results confirm the assignments based on the absorption spectra.

As to the corresponding oxalato complex, the isomer obtained from the second fraction in chromatographic separation showed an absorption spectrum similar to that of the fac(N)-isomer of the carbonato complex except for hypsochromic shifts due to a higher

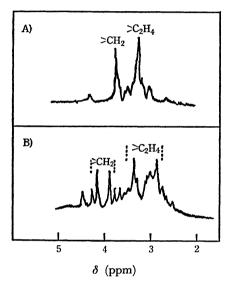


Fig. 3. PMR spectra of $[CoCO_3(i\text{-dtma})]$ (in D_2O , δ vs. DSS). A: mer(N), B: fac(N).

ligand field: $v_1 = 57.9 \times 10^{13} \text{ s}^{-1}$ (log $\varepsilon = 2.19$), $v_{II} = 82.6 \times 10^{13} \text{ s}^{-1}$ (log $\varepsilon = 2.25$). This fact indicates that this isomer has the fac(N) geometry. As to the isomer obtained from the first fraction, the gross features of the spectrum correspond well to those of the mer(N)-isomer of the carbonato complex except for the disappearance of a shoulder at ca. $74.5 \times 10^{13} \text{ s}^{-1}$. Thus, this complex can be identified as the mer(N)-isomer.

In a previous paper,⁷⁾ it has been said that a cobalt (III) complex consisting of a five-membered α-amino-acidate ring, two NH₃ groups in the *trans* position, and a four-membered carbonate ring reveals a shoulder which may be considered to be one component of the split second absorption band. This remark can now be modified as follows: such a shoulder appears even though the two NH₃ groups and a NH₂ group of an α-aminoacidate ion are replaced by a diethylenetriamine backbone (NNN).

This work was supported in part by a grant from the Ministry of Education, to which the authors' grateful acknowledgements are made.

References

- 1) Presented at the 23rd Symposium on Coordination Chemistry, Fukuoka, Oct., 1973.
- 2) P. W. Schneider and J. P. Collman, *Inorg. Chem.*, 7, 2010 (1968).
 - 3) M. Shibata, Nippon Kagaku Zasshi, 87, 771 (1966).
- 4) E. L. King and R. R. Walters, J. Amer. Chem. Soc., 74, 4471 (1952).
- 5) M. Mori, M. Shibata, and J. Azami, *Nippon Kagaku Zasshi*, **76**, 1003 (1955); M. Mori, M. Shibata, and M. Nanasawa, This Bulletin, **29**, 947 (1956); M. Mori, M. Shibata, and K. Hori, *ibid.*, **34**, 1809 (1961).
 - 6) S. Kanazawa and M. Shibata, ibid., 44, 2424 (1971).
- 7) K. Nakai, S. Kanazawa, and M. Shibata, *ibid.*, **45**, 3544 (1972).